
MODELING SPACE SYSTEMS WITH THE DATA SYSTEMS DYNAMIC SIMULATOR PLUS

Christopher Rouff
NASA Goddard Space Flight Center

Code 522.1
Greenbelt, MD 20771

(301) 286 2938
chris.rouff@gsfc.nasa.gov

Philip Message
Stanford Telecommunications Inc.

7501 Forbes Boulevard
Seabrook, MD 20706

(301) 464 8900
pmessage@stel.gsfc.nasa.gov

ABSTRACT

The Data Systems Dynamic Simulator Plus (DSDS+) is
a discrete-event-based simulator used to simulate com-
plex, high-data-rate, end-to-end systems. It was devel-
oped for the specific purpose of evaluating candidate
data systems for spacecraft. DSDS+ features a graphi-
cal user interface and hierarchical modeling. A data
system is modeled in DSDS+ by selecting pre-
programmed elements from the simulation library,
placing them in a work area, and connecting them to-
gether using direct manipulation to form a model of an
end-to-end system. When using DSDS+ the user has
access to a library of standard pre-programmed ele-
ments. These elements represent tailorable components
of NASA data systems and can be connected in any
logical manner. Additional elements can also be devel-
oped which allows the more sophisticated user the op-
tion of extending the standard element set. Next,
DSDS+ supports the use of data streams simulation.
Data streams is the name given to a technique that ig-
nores packet boundaries, but is sensitive to rate changes.
Because rate changes are rare compared to packet arri-
vals in a typical NASA data system, data stream simu-
lations require a fraction of the CPU run time.

1. INTRODUCTION

The Data Systems Dynamic Simulator Plus (DSDS+) is
a general-purpose, discrete-event-based simulation tool.
DSDS+ features a graphical user interface and hierar-
chical modeling. A data system is modeled in DSDS+
by selecting pre-programmed elements from the simula-
tion library, placing them in a work area, and connect-
ing them together using direct manipulation to form a

model of the end-to-end system. Examples of simula-
tion elements are data generators, CPUs, switches, as
well as orbit calculators, schedulers and many others. If
desired, users can also add their own modeling elements
to the library to extend the base classes supported.

Development of the Data Systems Dynamic Simulator
(DSDS) started in the late 1970's at Marshall Space
Flight Center. Under contract to NASA, the General
Electric Company was tasked to build a discrete event
simulation tool especially suited for modeling NASA
end-to-end data systems of the Space Shuttle and Space
Station eras. Since then, DSDS has been in continual
use. In 1985 the management and control of DSDS was
transferred to Goddard Space Flight Center (GSFC).

Since management of DSDS has moved to GSFC, sev-
eral changes have been made. First, an optimization
technique called data streams was added to the simula-
tor. Second, the character based user interface was
changed to a graphical user interface, with a name
change to DSDS+. In addition to the above, many
simulation elements have been added, modified and
streamlined. Stanford Telecommunications has been the
primary contractor for the above modifications.

2. DSDS+ OVERVIEW

Models are developed pictorially in DSDS+, using a
graphical user interface that provides close correlation
between the model representation and the real system
[1]. The user interface was developed on the X Win-
dowing System [2] using the Interviews toolkit [3]. It
allows models to be developed in a What You See Is
What You Get (WYSIWYG) manner. Simulation ele-

ments are placed on the screen and connected together
through direct manipulation. Users interactively select
elements they want to use, click on the screen where
they would like them to be placed, interactively set pa-
rameters of the elements, and connect elements together
by clicking on corresponding input and output pins.

DSDS+ also supports hierarchical modeling, to any
depth required, so that complex models can be decom-
posed into a series of detailed sub-level models. Users
are also allowed to export parameters which are not set
until the simulation is actually run. This allows simula-
tion parameters to be changed between simulations
without having to modify elements each simulation run.

In a DSDS+ model it is assumed that data is sent be-
tween elements in a packet. The packets can be simu-
lated in one of two modes: packet by packet or as a data
stream. Using packet simulation, packets are sent
through the system one at a time. The data stream
methodology simulates the changes in rate at each in-
stant in time (rather than the individual packets consti-
tuting the rate change), and hence the speed at which
the simulation runs is independent of the number of
packets flowing through the system. NASA's space-
based and ground-based data processing and communi-
cations systems are required to process extremely high
data rates and data volumes, and simulating these sys-
tems using the traditional packet methodology would
take months or years of CPU processing time - however,
the data stream methodology enables these simulations
to complete within just a few minutes. Both simulation
techniques are discussed further in a later section.

DSDS+ contains an extensive library of pre-
programmed simulation elements [4]. Examples of the
pre-programmed elements include: data generators and
sinks, data processors (e.g. CPUs with various service
disciplines), buffers and queues, and data switches and
routers. Each of these elements simulates a particular
function or service, which may be tailored by the user to
represent the specific application being modeled. For
example, the data generator has a list of parameters as-
sociated with it that enable the user to define character-
istics such as the packet sizes to be generated, their in-
ter-arrival times, their priorities, etc. If desired, multiple
instances of an element may be included in the model
(e.g. multiple data generators), and each instance will
have its own set of parameters defining the specific op-
erations being simulated.

From the results of the simulation the sizes of buffers,
the speed of processors and the speeds of data links that
will be needed for the system to have a particular per-
formance can be determined. Though DSDS+ itself

does not process cost information, once the types of
components are determined, the modeler can then de-
termine the price of the proposed system.

3. CREATING MODELS IN DSDS+

The following discusses the user interface of DSDS+
and how a modeler would go about developing and exe-
cuting a model. It discusses the main window (project
browser), the model editor, the scenario editor, the
simulator, the report browser and plots window.

Project Browser
The main DSDS+ window is the Project Browser
(Figure 1). It provides access to the various editors and
browsers that comprise the DSDS+ system. The current
project directory is shown just beneath the Project
Browser menu bar. The models in the directory are
shown in the left-hand list, and the scenarios pertaining
to the selected model are shown in the right-hand list.

Figure 1: Project Browser window

The “Edit Model” button opens the editor where simu-
lation models are defined. The “Edit Scenarios” button
opens the editor where a model can have multiple sce-
narios associated with it, each defining different run-
time conditions for the model (e.g. different random
number seeds to be used). The “Simulate” button runs
the simulator on the selected model and scenario. The
“Reports” button displays numeric results of the simula-
tion and the “Plots” button allows the user to view
graphs of collected data.

Model Editor
The Model Editor along with the Tool Box and a sub-
model is shown in Figure 2. The model editor enables
the modeler to create and edit hierarchical models. The
main features of the editor are the menu bar across the
top, the status bar below the menu bar, the work space in
the middle, and the scroll bars and zoomers on the bot-
tom and right edges.

The Toolbox, which appears whenever there is at least
one Model Editor open, is used to select the type of ob-
ject to be added to a model. This type is the highlighted
object shown in the rightmost column. The objects that
can be used in a model are simulation elements, sheets
(to indicate a sublevel for hierarchical models), off sheet
connectors, junctions for fan-in or fan-out of links,
links, and free text for labels. Elements are divided into
classes. By selecting a class in the left hand column of
the toolbox, the corresponding elements that belong to
that class appear in the middle column. When an ele-
ment is selected, it’s graphical representation is shown
at the top of the rightmost column.

Connections are indicated by a sequence of contiguous
horizontal and vertical line segments between an input

and an output pin, or between a junction and an input or
output. The vertical line on the right hand side of both
model editor windows in Figure 2 indicates where a
page break would appear when printed. Selecting the
link object in the Toolbox's palette enables the modeler
to override the automatic routing and perform manual
routing. Note that once a link is formed, either auto-
matically or manually, it will be automatically rerouted
if either of its ends is moved.

Hierarchical models may be built by placing a composite
"sheet" element in the workspace; the modeler can then
"enter" into this sheet, and add elements on it, or even
add lower-level sheets. The hierarchical support allows
models to be developed in a structured manner which
reduces the complexity of large models. In Figure 2, the
model in the lower window is an example of a submodel

Figure 2: DSDS+ Model editor, Toolbox and subsheet.

which defines the “EOS_AM1” element in the upper
window. Figure 3 illustrates this concept.

F
igure 3: Illustration of a hierarchical model.

Each element in a model simulates a particular function
or service, tailored by a set of user-supplied values to
represent the specific characteristics of the system being
modeled. For example, the user-supplied parameters for
the Source element (shown in the element editor in Fig-
ure 4) include the number of transactions to be gener-
ated, the transaction size, their inter-arrival times, etc.
If desired, multiple instances of an element may be in-
cluded in a model (e.g. multiple data Sources), and each
instance will have its own set of parameters defining the
specific operations being modeled.

Scenario Editor
Scenarios are a set of simulation program arguments
that control how a model is executed. The Scenario
Editor is where compiled models are setup for various
runs. Each run can have a different duration and differ-
ent random number seeds and can collect different sta-

tistics without changing the model. Each model can
have multiple scenarios associated with it, each defining
different run-time conditions for the model (e.g. differ-
ent random number seeds to be used). By separating
scenarios from models, it is possible to perform multiple
runs for a given model to compare results without hav-
ing to have separate models. The Scenario Editor is
identical to the Element Editor in operation, except that
the parameters apply to a scenario instead of an element.

Simulating a Model
After selecting a model and scenario, selecting the
"Simulate" button will start execution of the simulation
as a background process. A message will be displayed
in the transcript showing the id assigned to the process
by the operating system. When the process ends, this
number will be used to report its termination status.

After selecting a model and scenario and executing the
simulation, the "Reports" button will activate the Report
Browser. The Report Browser is a text file browser
which provides access to the various DSDS+ reports.
Reports include simulation initialization, runtime mes-
sages, event summary, point-to-point statistics, element
statistics, queue size statistics, queue entry statistics and
simulation trace. The Plot Editor is for viewing plots of
DSDS+ timeline data. Types of plots include storage,
utilization, throughput and queue statistics. Plots can
also be customized by the user. Figure 5 shows an ex-
ample plot and report.

OPTIMIZATION TECHNIQUES IN DSDS+

Large complex data systems create an extremely large
volume of data. A limiting factor when modeling these
data systems is the amount of simulation (CPU) run time
required to complete the simulation. The CPU run time

Figure 4: Element Editor with Source element parameters.

increases when the number of events in the simulation
increases. During a simulation, each packet generated
creates an event. As the packets flow through the model
(being queued, processed, sorted, etc.) more events are
created, thus increasing the CPU run time of the simu-
lation.

For large complex data systems with extremely large
volumes of data the number of events generated can
become overwhelming. Since the purpose of doing a
simulation is to try different configurations, determine
potential bottlenecks, and test out the effects of different
components with different costs and performance, it is
important to be able to run a simulation many times in a
timely fashion. This allows different versions of the
model to be compared to determine which components
would work best given system constraints, such as price
and performance.

To bring simulation run times down to a reasonable
value, modelers often use optimization techniques. The
next two sections describe two different optimization
techniques and their use with DSDS+.

Artificially-Inflated Packets
When modeling a system, the data that passes through it
is divided into packets. Packets (or messages) may be
characterized by size. In standard DSDS+, packet size
is a parameter that is supplied by the user. The size of

these data packets can vary, but the typical NASA
packet size is in the range of 10,000 bits. Very large
numbers of packets are associated with the simulation of
current and emerging NASA data systems. Every
packet transfer results in a state change within the
model. Each state change requires CPU run time. For
instance, to simulate a 24 hour "true" EDOS model it
would have taken more than a day of CPU time.

As complexity, data rates and need for longer run times
increases, so does the need for an optimization tech-
nique. Artificially raising the packet size is one way of
optimizing the simulation. By increasing the packet
size, say from 10,000 to 100,000 bits, CPU run time is
reduced by a factor of 10 due to the decrease in events
flowing through the system. Unfortunately, increasing
the size of packets results in errors. The magnitude of
the error can be predicted by comparing the results to a
"truth" model. A truth model is one constructed with
the "real" packet size. It is compared to a test model
which is constructed with the elevated packet size.
However, it is impractical to develop a truth model for
some large systems, such as EDOS which when fully
configured, would consist of more than 100 payloads
(experiments). Before reaching users, payload data
must pass through 10 or more processing points. Thus
it is not easy to determine the effects on the modeling
results when the packets are inflated artificially.
Data Streams
The data streams technique is another way of optimizing

Figure 5: Report and plot browsers.

the modeling process. As stated above, the objective is
to reduce the number of events in a given simulation
run. The data streams method models rate changes
rather than individual packets. Consider the example of
an experiment which transmits a 10,000 bit packet at
the constant rate of 100 packets per second. Consider
also that the experiment transmits 10 minutes each or-
bit. In a "true" model this translates into 600,000 pack-
ets (events) per 10 minute duty cycle. A data stream
represents this duty cycle as two events; namely one
start and one end. The data stream would be character-
ized as a 10 minute stream with a transmission rate of
600,000 bits per second.

The key to understanding the data stream methodology
is that it takes advantage of the linear flow of data be-
tween state changes. The speed at which the simulation
runs for the data streams method is not dependent on the
volume of packets, but instead is dependent on the num-
ber of times the data rate changes. The data streams
method requires less computation and thus reduces the
time to simulate the passing of data through the system.
Data streams take advantage of the fact that data sys-
tems behave linearly between state changes. Therefore,
data streams can model the effects of the changes in the
data rates of a system rather than modeling each indi-
vidual packet. This optimizing method also reduces the
CPU run time of a simulation due to the decrease in
events.

One difference between packet and data stream model-
ing is the way a processor's bandwidth is allocated. A
packet, no matter its size, occupies the entire bandwidth
of its processor for some finite period of time. Data
streams, on the other hand, occupy only that portion of
the bandwidth which is equal to or less than its trans-
mission rate. Furthermore, data streams share the
bandwidth proportionally on a first in, first out basis
with other competing streams.

Comparison of Data Streams to Packet Modeling
Data stream simulation is tantamount to modeling with
infinitesimally small (approximately 1 bit) packets. In
terms of magnitude, 1 bit is closer to 10,000 than 20,000
bits and more. Based upon this empirical point alone,
an assumption could be made that errors induced by data
stream optimization would be less.

An experiment was performed to assess the error pro-
duced by artificially increasing the packet size of a
packet model of a system and the error introduced by
data streams modeling. Models using these optimiza-
tion techniques were compared to a "Truth Model" - a
model which is run using the actual packet size. Figure
6 shows the run times of the Truth Model where the

packet sizes were 15 Kilobits (reflecting the actual im-
plementation), a model where the packet size was artifi-
cially expanded to 1 Megabit packets, and the data
streams methodology. As expected, the Truth Model
ran the longest, 3,279 CPU seconds. The expanded
packet model ran for 47 seconds and the data streams
model for 62 seconds.

 Simulation (CPU) Run Time

Seconds

Model

3279

47 62

 "Truth"
(15Kb Packets)

Expanded Packet
(1Mb Packets)

Data Stream

"Truth"

Expanded Packet

Data Stream

Models

Figure 6: Run times of “truth”, expanded packet and
data stream models.

Figure 7 illustrates the percentage of difference for the
data's mean transit times from source to sink of the ex-
panded packet model and the data stream model when
compared to the truth model. As can be seen, there is a
significant amount of error introduced in the mean tran-
sit times of the data when the packet size is artificially
increased. The mean transit time errors in the data
stream model were negligible when compared to the
expanded packet model for all six payloads.

5. CONCLUSION

DSDS+ has been used on many projects at NASA to
evaluate candidate architectures for end-to-end data
systems. It provides a direct manipulation graphical
user interface and hierarchical model development that
provides close correlation between the representation
and real system. The combination of the packet model-
ing, data streams modeling and extensibility makes the
tool versatile and suitable for many different modeling
situations. The data streams optimization technique
allows accurate modeling of high data rate systems that
could not be modeled accurately using the expanded
packet optimization technique. As more high data rate
systems are used in government and commercial appli-
cations, a technique such as data streams will be come
essential for modeling their performance in a timely and
accurately manner.

DSDS+ has been used by Johnson, Marshall and God-
dard Space Flight Centers. Projects that have used
DSDS+ include ESDIS (GSFC), Space Station (at JSC),
and Advanced Xray Astronomical Facility (MSFC).
DSDS+ is available on Sun and DEC workstations run-
ning under UNIX and the X Window System.

DSDS+ and documentation can be obtained by anony-
mous ftp from kong.gsfc.nasa.gov in /pub/dsds. The
DSDS+ home page is at URL
http://groucho.gsfc.nasa.gov/Code_520/Code_522/Proj-
ects/DSDSPlus/.

1 2 3 4 5 6

Percent
Difference

Payload

1759

1079

822

129

393

157

-82
-19 -13

4 11 11"Truth"
Model

Expanded Packet

Data Stream

Models

Figure 7: Mean transit time difference.

6. REFERENCES

[1] Data Systems Dynamic Simulator (DSDS+) User’s
Guide. Version 1.2. June 1996. Data Systems Technol-
ogy Division Report number DSTL-96-001.
[2] Scheifler, R. and Gettys, J. 1986. The X Window
System. ACM Transactions on Graphics. April. 79-109.
[3] Linton, M. A., Vlissides, J. M. and Calder, P. R.
1989. Composing User Interfaces with Interviews. IEEE
Computer, February, 1989.
[4] Data Systems Dynamic Simulator (DSDS+) Stan-
dard Library Manual. Version 1.2. June 1996. Data
Systems Technology Division Report number DSTL-96-
002.

